5 Factoring Polynomials

5–1 Factoring Integers

Objective: To factor integers and to find the greatest common factor of several integers.

Vocabulary

Factor To write a number as a product of numbers. For example, $72 = 8 \cdot 9$.

Factor set The set over which a number is factored.

- **Prime number, or prime** An integer greater than 1 that has no positive integral factor other than itself and 1. For example, 19 is prime.
- **Prime factorization** Writing a positive integer as a product of primes. For example, the prime factorization of 30 is $2 \cdot 3 \cdot 5$.
- **Common factor** A factor of two or more integers is called a common factor of the integers. For example, 3 is a common factor of 6 and 9.
- Greatest common factor (GCF) The greatest integer that is a factor of two or more given integers.

Example 1	List all the pos	sitive factors of 42.
Solution	$42 = 1 \cdot 42 = 2 \cdot 21 = 3 \cdot 14 = 6 \cdot 7 (= 7 \cdot 6)$	Divide 42 by 1, 2, 3, until a pair of factors is repeated. The positive factors of 42 are 1, 2, 3, 6, 7, 14, 21, and 42.

List	all	of	the	positive	factors	of	each	number.
------	-----	----	-----	----------	---------	----	------	---------

1. 10	2. 24	3. 36	4. 40
5. 17	6. 54	7. 29	8. 42

	CAUTION	Factors come in pa	irs. For example,	since $12 \div 3 = 4$, 3 and 4 are both factors of 12.
--	---------	--------------------	-------------------	-----------------------	-----------------------------------

Example 2	List all pairs	s of factors of ea	ich integer: a.	18 b. -18
Solution	a. (1)(18) (2)(9)	(-1)(-18) (-2)(-9)	b. $(1)(-18)$ (2)(-9)	
		(-2)(-9) (-3)(-6)	(2)(-9) (3)(-6)	. , . ,

List all pairs of factors of each integer.

9. 11	10. 20	11. 23	12. 39	13. 57
14. 60	15. 75	16. 78	17. 81	18. 105
19. 121	20. -30	21. -63	22. -57	23. -93

Study Guide, ALGEBRA, Structure and Method, Book 1

Copyright © by Houghton Mifflin Company. All rights reserved.

5–1 Factoring Integers ((continued)
--------------------------	-------------

Example 3	Find the prime factorization of 252.	
Solution	Try the primes in order as divisors. Divide by each prime as many times as possible before going on to the next prime. Stop when all factors are primes.	$252 = 2 \cdot 126$ = 2 \cdot 2 \cdot 63 = 2 \cdot 2 \cdot 3 \cdot 21 = 2 \cdot 2 \cdot 3 \cdot 3 \cdot 7 = 2^2 \cdot 3^2 \cdot 7

Find the prime factorization of each number. A calculator may be helpful.

24. 22	25. 30	26. 56	27. 64	28. 44	29. 50
30. 72	31. 84	32. 93	33. 180	34. 275	35. 388

Example 4	Find the GCF of 540 and 264.
Solution	1. First find the prime factorization of each integer. $540 = 2^2 \cdot 3^3 \cdot 5$ $264 = 2^3 \cdot 3 \cdot 11$
	2. Then find the product of smaller powers of each common prime factor.
	The common prime factors are 2 and 3. The smaller power of 2 is 2^2 . The smaller power of 3 is 3.
	3. The GCF of 540 and 264 is $2^2 \cdot 3$ or 12.

CAUTION If there are no common prime factors, the GCF is 1. For example, since $12 = 2^2 \cdot 3$ and $25 = 5^2$, the GCF of 12 and 25 is 1.

Find the GCF of each group of numbers. A calculator may be helpful.

36. 36, 90	37. 28, 70	38. 120, 128	39. 108, 180
40. 105, 350	41. 126, 144	42. 145, 174	43. 260, 325

Mixed Review Exercises

Simplify.

1. $\frac{1}{2}(4x + 2) + 3(\frac{1}{3}x - 1)$	2. $(4 + 3)^2$	3. $2^2 + (3 + 1)^2$
4. $2x - 3 - (2x + 4)$	5. $2ab(3a^2)(4b)$	6. $2x^3(3y)(5y)$
7. $(2x)^3$	8. $3n(2n^2 - 5n) + 7n^2$	9. $(-3)^4 x^4$
10. $x(x^2 - 2) - x^2(x + 4)$	11. $(3y + 4)(y + 2)$	12. $(x - 3)(2x + 3)$